HLSC Integrated Life Sciences

HLSC100 Students in the University: Integrated Life Sciences
Credits: 1
Grading Method: Regular, Pass-Fail, Audit
Restriction: Must be in the Honors College Integrated Life Sciences program. Credit only granted for: EDCP108O, HLSC100, HONR100, or UNIV100H.

In a small classroom setting, Integrated Life Sciences students learn about academic resources on and off campus.

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Seats (Total: 25, Open: 25, Waitlist: 0)</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>Hannah Jardine</td>
<td>LPA 1125</td>
<td>Tu 2:00pm - 3:30pm</td>
<td>For students in the Honors College Integrated Life Sciences Program only.</td>
</tr>
<tr>
<td>0102</td>
<td>Hannah Jardine</td>
<td>LPA 1125</td>
<td>W 2:00pm - 3:30pm</td>
<td></td>
</tr>
<tr>
<td>0103</td>
<td>Hannah Jardine</td>
<td>LPA 1125</td>
<td>Th 2:00pm - 3:30pm</td>
<td></td>
</tr>
</tbody>
</table>

HLSC207 Principles of Biology III Organismal Biology
Credits: 3
Grading Method: Regular, Pass-Fail, Audit
Prerequisite: BSCI105 and BSCI106; or students who have taken courses with comparable content may contact the department. Restriction: Must be in the Honors College Integrated Life Sciences program. Credit only granted for: BSCI207, BSCI279D, or HLSC207.

The diversity, structure and function of organisms as understood from the perspective of their common physicochemical principles and unique evolutionary histories.

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Seats (Total: 80, Open: 80, Waitlist: 0)</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>Todd Cooke</td>
<td>CCC 1205</td>
<td>MWF 9:00am - 9:50am</td>
<td></td>
</tr>
</tbody>
</table>

HLSC374 Mathematical Modeling in Biology
Credits: 4
Grading Method: Regular, Pass-Fail, Audit
Prerequisite: MATH130; or MATH140. And MATH131; or MATH141. Restriction: Must be in a major in UGST-HCOL-Integrated Life Sciences Program. Credit only granted for: HLSC374 or BSCI474.

Students will learn empowering mathematical techniques through the understanding of biological models. Models are chosen from a variety of biological disciplines. Mathematical skills that will be developed along the way include: solving non-linear difference equations, eigenvector analysis, and the implementation of these algorithms as computer models.

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>Seats (Total: 25, Open: 25, Waitlist: 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>Jonathan Simon</td>
<td>CCC 1111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TuTh 9:30am - 10:45am</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 1:00pm - 3:50pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCC 1111 Lab</td>
</tr>
</tbody>
</table>